Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Implementation of FIR filters for fast multi-channel processing
 
semester or other student projects

Implementation of FIR filters for fast multi-channel processing

Ferry, Corentin  
2017

Digital signal processors are ubiquitous in electronics, with applications ranging from sound processing to software-defined radio. Finite impulse response (FIR) filters are among the components that are used for the processing; the implementation is tailored to the user’s needs, whether they specifically need performance or configurability. Handling numerous channels in a single filter block can be achieved in hardware by running multiple filters in parallels, with a high space expense and controller overhead. This project proposes and discusses an implementation template for a pipeline that simultaneously processes a desired number of channels, while keeping coefficients configurability. The implementation we propose is economic in terms of area while meeting the theoretical timing requirements to process long filters.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rap.pdf

Access type

openaccess

Size

1.65 MB

Format

Adobe PDF

Checksum (MD5)

b3b8b692067aa2bf7d37f8790a6a8762

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés