The mechanisms contributing to experimental quality factors of shortwavelength (lambda = 440-480 nm) III-nitride on silicon one-dimensional photonic crystal cavities were quantified. Fluctuations in fundamental and first-order cavity mode wavelength and quality factor were compared over sets of nominally identical cavities. Unlike at. = 1.5 mu m, experimental quality factors were not limited by fabrication disorder modeled as smooth, normally distributed hole size and position variations; after ruling out absorption losses, additional scattering losses were found to predominate at short wavelengths. Experimental quality factors were sensitive to conformal deposition of few nanometer thin films on the photonic crystal surface, suggesting that the additional scattering losses were linked to the surface.