Measurements of charm mixing and CP violation using D-0 -> K-+/-pi(-/+) decays

Measurements of charm mixing and CP violation parameters from the decay-time-dependent ratio of D-0 -> K+pi(-) to D-0 -> K-pi(+) decay rates and the charge-conjugate ratio are reported. The analysis uses (B) over bar -> D*(+) mu X-, and charge-conjugate decays, where D *(+) -> D-0 pi(+), and D-0 -> K-+/-pi(-/+). The pp collision data are recorded by the LHCb experiment at center-of-mass energies root s = 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). The data are analyzed under three hypotheses: (i) mixing assuming CP symmetry, (ii) mixing assuming no direct CP violation in the Cabibbo-favored or doubly Cabibbo-suppressed decay amplitudes, and (iii) mixing allowing either direct CP violation and/or CP violation in the superpositions of flavor eigenstates defining the mass eigenstates. The data are also combined with those from a previous LHCb study of D-0 -> K pi decays from a disjoint set of D*(+) candidates produced directly in pp collisions. In all cases, the data are consistent with the hypothesis of CP symmetry.


Published in:
Physical Review D, 95, 5, 052004
Year:
2017
Publisher:
College Pk, Amer Physical Soc
ISSN:
2470-0010
Laboratories:




 Record created 2017-05-30, last modified 2018-09-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)