Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Toward Achieving Harmonization in a Nanocytotoxicity Assay Measurement Through an Interlaboratory Comparison Study
 
research article

Toward Achieving Harmonization in a Nanocytotoxicity Assay Measurement Through an Interlaboratory Comparison Study

Elliott, John T.
•
Rosslein, Matthias
•
Song, Nam Woong
Show more
2017
Altex-Alternatives To Animal Experimentation

Development of reliable cell-based nanotoxicology assays is important for evaluation of potentially hazardous engineered nanomaterials. Challenges to producing a reliable assay protocol include working with nanoparticle dispersions and living cell lines, and the potential for nano-related interference effects. Here we demonstrate the use of a 96-well plate design with several measurement controls and an interlaboratory comparison study involving five laboratories to characterize the robustness of a nanocytotoxicity MTS cell viability assay based on the A549 cell line. The consensus EC50 values were 22.1 mg/L (95% confidence intervals 16.9 mg/L to 27.2 mg/L) and 52.6 mg/L (44.1 mg/L to 62.6 mg/L) for positively charged polystyrene nanoparticles for the serum-free and serum conditions, respectively, and 49.7 mu mol/L (47.5 mu mol/L to 51.5 mu mol/L) and 77.0 mu mol/L (54.3 mu mol/L to 99.4 mu mol/L) for positive chemical control cadmium sulfate for the serum-free and serum conditions, respectively. Results from the measurement controls can be used to evaluate the sources of variability and their relative magnitudes within and between laboratories. This information revealed steps of the protocol that may need to be modified to improve the overall robustness and precision. The results suggest that protocol details such as cell line ID, media exchange, cell handling, and nanoparticle dispersion are critical to ensure protocol robustness and comparability of nanocytotoxicity assay results. The combination of system control measurements and interlaboratory comparison data yielded insights that would not have been available by either approach by itself.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document-1.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3.95 MB

Format

Adobe PDF

Checksum (MD5)

0e721777863488218682e350eb6bbf24

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés