Naturalness and Neutral Naturalness in the LHC Era

We present two different approaches to solve the hierarchy problem of the Standard Model and to provide a consistent dynamical mechanism for electroweak symmetry breaking. As a first scenario, we follow the naturalness paradigm as realized in Composite Higgs theories, which conceive the Higgs particle as a bound state of a new strongly interacting sector confining at the TeV scale. We present a minimal implementation of the model and study in detail the phenomenology of vector resonances, which are predicted as states excited from the vacuum by the conserved currents of the new strong dynamics. This analysis allows us to derive constraints on the parameter space of Composite Higgs models from the presently available LHC data and to confront naturalness with experimental results. Motivated by the rising tension between theoretical expectations and the absence of new physics signals at the LHC, we consider as a second possibility the neutral naturalness paradigm and address the hierarchy problem by posing the existence of a mirror copy of the Standard Model, as realized in Twin Higgs theories. This new color-blind sector is the main actor in protecting the Higgs mass from large radiative corrections and is un-discoverable at the LHC, allowing us to push far in the ultraviolet the scale where the Standard Model effective theory breaks down and colored resonances appear. We present an implementation of the Twin Higgs program into a composite model and discuss the requirements for uplifting the symmetry protection mechanism also to the ultraviolet theory. After introducing a consistent Composite Twin Higgs model, we consider the constraints imposed on the scale where colored resonances are expected by the determination of the Higgs mass at three loops order, electroweak precision tests and perturbativity of the ultraviolet-complete model. We show that, although allowing in principle the new physics scale to lie far out of the LHC reach, these constructions need the existence of light colored top partners, with a mass of around 2-4 TeV, to comply with indirect observations. Neutral naturalness models may then evade detection at the LHC, but they can be probed and falsified at future colliders.


Advisor(s):
Rattazzi, Riccardo
Year:
2017
Publisher:
Lausanne, EPFL
Keywords:
Other identifiers:
urn: urn:nbn:ch:bel-epfl-thesis7739-9
Laboratories:




 Record created 2017-05-24, last modified 2019-05-09

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)