Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanism of formation of silver nanoparticles in MAG-DMAEMA copolymer aqueous solutions
 
research article

Mechanism of formation of silver nanoparticles in MAG-DMAEMA copolymer aqueous solutions

Shvedchenko, Dmitry O.
•
Nekrasova, Tatiana N.
•
Nazarova, Olga V.
Show more
2015
Journal of Nanoparticle Research

Dispersed Ag nanoparticles were prepared in aqueous solutions in the presence of pure poly[2-(dimethylamino)ethyl methacrylate] (poly-DMAEMA), poly[2-deoxy-2-methacrylamido-d-glucose] (poly-MAG), and their copolymers of poly[MAG–DMAEMA] with different mole fractions. Polymers contributed to the silver reduction, formation of nanoparticles, and stabilization of suspensions. No agglomerations of nanoparticles are formed. For each sample, more than one thousand silver particles were measured by transmission and scanning transmission electron microscopy to determine their number vs diameter and volume versus diameter distributions. The samples with the smallest nanoparticle mode diameter of 2.3 nm were formed in DMAEMA homopolymer suspension, while the mode diameter increased up to 13.3 nm in copolymers depending on the mole fraction of DMAEMA. A model of Ag nanoparticles’ growth taking into account the structure of the copolymers and the amount of reducing centers per monomer is proposed. The volume fraction of large Ag particles (>15–20 nm) in the tail of distributions was determined to estimate the part of less efficient nanoparticles assuming that only surface atoms are active. The largest volume occupied by big particles is measured in the solution with pure poly-MAG. Figures of merit, as the ratio of particle area to total volume of particles, were compared for five systems of Ag NPs/polymer. They can be understood from an economical point of view as the total silver investment compared to efficiency. © 2015, Springer Science+Business Media Dordrecht.

  • Details
  • Metrics
Type
research article
DOI
10.1007/s11051-015-3083-5
Author(s)
Shvedchenko, Dmitry O.
Nekrasova, Tatiana N.
Nazarova, Olga V.
Buffat, Philippe A.  
Suvorova, Elena I.  
Date Issued

2015

Publisher

Springer Verlag

Published in
Journal of Nanoparticle Research
Volume

17

Issue

6

Start page

275

Subjects

Silver nanoparticles

•

Dispersion of sizes

•

2-Deoxy-2-methacrylamido-D-glucose (MAG)

•

[2-(Dimethylamino)ethyl methacrylate] (DMAEMA)

•

Activity

•

Transmission electron microscopy

Note

Cette publication a été crée à l'EPFL et à l'Institut de Cristallographie de l'Académie Russe des Sciences ICRAS à Moscou

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CIME  
Available on Infoscience
May 16, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/137410
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés