Infoscience

Journal article

In vivo reprogramming of non-mammary cells to an epithelial cell fate is independent of amphiregulin signaling

AREG-/- mice demonstrate impaired mammary development and form only rudimentary ductal epithelial trees, however, AREG-/- glands are still capable of undergoing alveologenesis and lactogenesis during pregnancy. Transplantation of AREG-/- mammary epithelial cells into cleared mouse mammary fat pads results in a diminished capacity for epithelial growth (∼15%) as compared to wild type mammary epithelial cells. To determine whether ERα and/or AREG signaling were necessary for non-mammary cell redirection, we inoculated either ERα-/- or AREG-/- mammary cells with non-mammary progenitor cells (WapCre/Rosa26LacZ+ male testicular cells or GFP+ embryonic neuronal stem cells). ERα-/- cells possessed a limited ability to grow or reprogram non-mammary cells in transplanted mammary fat pads. AREG-/- mammary cells were capable of redirecting both types of non-mammary cell populations to mammary phenotypes in regenerating mammary outgrowths. Transplantation of fragments from AREG-reprogrammed chimeric outgrowths resulted in secondary outgrowths in 6 out of 10 fat pads, demonstrating the self-renewing capacity of the redirected non-mammary cells to contribute new progeny to chimeric outgrowths. Nestin was detected at the leading edges of developing alveoli suggesting its expression may be essential for lobular expansion.

Fulltext

Related material