Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamics of methane dissociation on transition metals
 
research article

Dynamics of methane dissociation on transition metals

Luntz, Alan C.
•
Beck, Rainer D.  
2017
Journal of Vacuum Science and Technology A

One of the many contributions of Harold Winters to surface science was his pioneering ultrahigh vacuum study on the kinetics of the technologically important dissociation of CH4 on transition metals in the 1970s. He observed a dramatic activation of the dissociation with surface temperature alone and a huge isotope effect and suggested a simple dynamical model to rationalize his results. Since that time, our general understanding of the dynamics of gas-surface dissociations has exploded due to experimental advances (e.g., molecular beam and eigenstate resolved studies) and theoretical advances (quantum or classical dynamics on ab initio potential energy surfaces). This review tries to highlight how our understanding of the dynamics of CH4 dissociation on transition metals has matured since Harold’s pioneering experiments and original model.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

J. Vac. Sci. Technol. A 35(5) SepOct 2017.pdf

Access type

openaccess

Size

966.53 KB

Format

Adobe PDF

Checksum (MD5)

07a5808b0695edd01de4d193c2ea109b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés