Privacy has recently gained an importance beyond the field of cryptography. In that regard, the main goal behind this thesis is to enhance privacy protection. All of the necessary mathematical and cryptographic preliminaries are introduced at the start of this thesis. We then show in Part I how to improve set membership and range proofs, which are cryptographic primitives enabling better privacy protection. Part II shows how to improve the standards for Machine Readable Travel Documents (MRTDs), such as biometric passports. Regarding set membership proofs, we provide an efficient protocol based on the Boneh-Boyen signature scheme. We show that alternative signature schemes can be used and we provide a general protocol description that can be applied for any secure signature scheme. We also show that signature schemes in our design can be replaced by cryptographic accumulators. For range proofs, we provide interactive solutions where the range is divided in a base u and the u-ary digits are handled by one of our set membership proofs. A general construction is also provided for any set membership proof. We additionally explain how to handle arbitrary ranges with either two range proofs or with an improved solution based on sumset representation. These efficient solutions achieve, to date, the lowest asymptotical communication load. Furthermore, this thesis shows that the first efficient non-interactive range proof is insecure. This thesis thus provides the first efficient and secure non-interactive range proof. In the case of MRTDs, two standards exist: one produced by the International Civil Aviation Organization (ICAO) and the other by the European Union, which is called the Extended Access Control (EAC). Although this thesis focuses on the EAC, which is supposed to solve all privacy concerns, it shows that both standards fail to provide complete privacy protection. Lastly, we provide several solutions to improve them.