Hybrid Heterojunctions of Solution-Processed Semiconducting 2D Transition Metal Dichalcogenides

Exfoliated transition metal dichalcogenides (2D-TMDs) are attractive light-harvesting materials for large-area and inexpensive solar energy conversion given their ability to form highly tolerant heterojunctions. However, the preparation of large-area heterojunctions with these materials remains a challenge toward practical devices, and the details of photogenerated charge carrier harvesting are not well established. In this work, we use all solution-based methods to prepare large-area hybrid heterojunction films consisting of exfoliated semiconducting 2H-MoS2 flakes and a perylene-diimide (PDI) derivative. Hybrid photoelectrodes exhibited a 6-fold improvement in photocurrent compared to that of bare MoS2 or PDI films. Kelvin probe force microscopy, X-ray photoelectron spectroscopy, and transient absorption measurements of the hybrid films indicate the formation of an interfacial dipole at the MoS2/organic interface and suggest that the photogenerated holes transfer from MoS2 to the PDI. Moreover, performing the same analysis on MoSe2-based hybrid devices confirms the importance of proper valence band alignment for efficient charge transfer and photogenerated carrier collection in TMD/organic semiconductor hybrid heterojunctions.

Published in:
Acs Energy Letters, 2, 2, 524-531
Washington, Amer Chemical Soc

 Record created 2017-03-27, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)