Files

Abstract

Approximation algorithms are a commonly used tool for designing efficient algorithmic solutions for intractable problems, at the expense of the quality of the output solution. A prominent technique for designing such algorithms is the use of Linear Programming (LP) relaxations. An optimal solution to such a relaxation provides a bound on the objective value of the optimal integral solution, to which we compare the integral solution we return. In this context, when studying a specific problem, two natural questions often arise: What is a strong LP relaxation for this problem, and how can we exploit it? Over the course of the past few decades, a significant amount of effort has been expended by the research community in order to answer these questions for a variety of interesting intractable problems. Although there exist multiple problems for which we have designed LP relaxations that achieve best-possible guarantees, there still exist numerous problems for which we either have no strong LP relaxations, or do not know how to use them. The main focus of this thesis is extending our understanding of such strong relaxations. We focus on designing good approximation algorithms for certain allocation problems, by employing a class of strong LP relaxations, called configuration-LPs. For many such allocation problems, the best-known results are derived by using simple and natural LP relaxations, whereas configuration-LPs have been used successfully on several occasions in order to break pre-existing barriers set by weaker relaxations. However, our understanding of configuration-LPs is far from complete for many problems. Therefore, understanding and using these relaxations to the farthest extent possible is a quite intriguing question. Answering this question could result in improved approximation algorithms for a wide variety of allocation problems. The first problem we address in this thesis is the restricted max-min fair allocation problem. Prior to our work, the best known result provided an $\Omega(1)$-approximation that ran in polynomial time. Also, it was known how to estimate the value of an optimal solution to the problem within a factor of $1/(4+c)$, for any $c>0$, by solving the corresponding configuration-LP. Our first contribution in this thesis is the design of a $1/13$-approximation algorithm for the problem, using the configuration-LP. Specifically, although our algorithm is fully combinatorial, it consists of a local-search procedure that is guaranteed to succeed only when the configuration-LP is feasible. In order to establish the correctness and running time of the algorithm, it is crucial to use the configuration-LP in our analysis. The second problem we study is the scheduling of jobs on unrelated machines in order to minimize the sum of weighted completion times. For this problem, the best known approximation algorithm achieves a ratio of $3/2-r$, for some small $r>0$. Our second contribution in this thesis is the improvement of this ratio to $(1+\sqrt{2})/2+c$, for any $c>0$, for the special case of the problem where the jobs have uniform Smith ratios. To achieve this ratio, we design a randomized rounding algorithm that rounds solutions to the corresponding configuration-LP. Through a careful examination of the distribution this randomized algorithm outputs, we identify the one that maximizes the approximation ratio, and we then upper bound the ratio this worst-case distribution exhibits by $(1+\sqrt{2})/2+c$.

Details

Actions

Preview