Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. CO2 separation properties of cation-exchanged zeolites investigated by neutron diffraction
 
conference paper

CO2 separation properties of cation-exchanged zeolites investigated by neutron diffraction

Hudson, Matthew R.
•
Queen, Wendy L.  
•
Brown, Craig M.
Show more
2012
Abstracts of Papers, 243rd ACS National Meeting & Exposition, San Diego, CA, United States, March 25-29, 2012

Zeolites are one class of porous materials that are currently being explored for sepn. applications in the aim of reducing environmentally harmful carbon dioxide (CO2) from the combustion of fossil fuels. The several archetypical zeolites being employed or researched for this include zeolites X, Y, beta, CHA, MFI. While much work has been done on the uptake and sepn. abilities of these zeolites in their various cation-exchanged forms, there is little in the way of understanding about how the adsorbed gases interact with the host frameworks or exchanged cations. There are two fundamental questions: Does the adsorbed gas interact with the Si/AlO4 framework or the exchanged cations And do those cations (and which cations) reorient or shift with increased gas concns. potentially hindering the sepn. ability Powder neutron diffraction is a particularly useful tool for the investigation of in situ gas adsorption allowing for the accurate detn. of the location of the adsorbed gas relative to the zeolite host and was employed to det. the relationship between the zeolites and gases. The zeolites (X, Y, beta, CHA, MFI) and gases (CO2, N2, CH4, H2) studied were detd. through available literature from the type of CO2 sepn. application (pre- or post-combustion) that each material excelled in sepg.

  • Details
  • Metrics
Type
conference paper
Author(s)
Hudson, Matthew R.
Queen, Wendy L.  
Brown, Craig M.
Fickel, Dustin W.
Lobo, Raul F.
Date Issued

2012

Publisher

American Chemical Society

Published in
Abstracts of Papers, 243rd ACS National Meeting & Exposition, San Diego, CA, United States, March 25-29, 2012
Start page

PHYS

End page

80

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LFIM  
Available on Infoscience
February 23, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/134760
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés