Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O-3/H2O2 and UV/H2O2)
 
research article

Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O-3/H2O2 and UV/H2O2)

Lee, Minju  
•
Merle, Tony
•
Rentsch, Daniel
Show more
2017
Environmental Science & Technology

The abatement of 9 polychloro-1,3-butadienes (CBDs) in aqueous solution by ozone, UV-C(254 nm) photolysis, and the corresponding advanced oxidation processes (AOPs) (i.e., O-3/H2O2 and UV/H2O2) was investigated. The following parameters were determined for 9 CBDs: second-order rate constants for the reactions of CBDs with ozone (k(O3)) (<0.1-7.9 x 10(3) M-1 s(-1)) or with hydroxyl radicals (k.(OH)) (0.9 x 10(9) - 6.5 x 10(9) M-1 s(-1)), photon fluence-based rate constants (k') (210-2730 m2 einstein-1), and quantum yields (Phi) (0.03-0.95 mol einstein(-1)). During ozonation of CBDs in a natural groundwater, appreciable abatements (>50% at specific ozone doses of 0.5 gO(3)/gDOC to similar to 100% at >= 1.0 gO(3)/gDOC) were achieved for tetra-CBDs followed by (Z)-1,1,2,3,4-penta-CBD and hexa-CBD. This is consistent with the magnitude of the determined k(O3) and k.(OH). The formation of bromate, a potentially carcinogenic ozonation byproduct, could be significantly reduced by addition of H2O2. For a typical UV disinfection dose (400 J/m2), various extents of phototransformations (10-90%) could be achieved. However, the efficient formation of photoisomers from CBDs with E/Z configuration must be taken into account because of their potential residual toxicity. Under UV-C(254 nm) photolysis conditions, no significant effect of H2O2 addition on CBDs abatement was observed due to an efficient direct phototransformation of CBDs.

  • Details
  • Metrics
Type
research article
DOI
10.1021/acs.est.6b04506
Web of Science ID

WOS:000391346900055

Author(s)
Lee, Minju  
Merle, Tony
Rentsch, Daniel
Canonica, Silvio
Von Gunten, Urs  
Date Issued

2017

Publisher

American Chemical Society

Published in
Environmental Science & Technology
Volume

51

Issue

1

Start page

497

End page

505

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LTQE  
Available on Infoscience
February 17, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/134544
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés