Equilibria and Speciation of Chloramines, Bromamines, and Bromochloramines in Water

The stabilities and speciation of the halamines in water are difficult to characterize experimentally. We provide theoretical estimates of aqueous standard free energies of formation for inorganic chloramines, bromamines, and bromochloramines, based on high-accuracy theoretical standard free energies of formation in gas phase combined with quantum chemical estimates of Henry’s law constant. Based on comparisons between several theoretical and experimental datasets, we assign an error of 1.1–1.2 log unit for equilibrium constants of several reactions leading to halamines in water. The reactions of ammonia with HOCl or HOBr that lead to dichloramine, trichloramine, and tribromamine are found to be thermodynamically more favorable than was previously believed. The newly reported equilibrium data also allow us to propose rate constant values for some hydrolysis and disproportionation reactions of dichloramine, monobromamine, and bromochloramine. Finally, theoretical results indicate aqueous acid dissociation constant (pKa) values of 1.5 ± 1 for NH3Cl+, 0.8 ± 1 for NH3Br+, 11.8 ± 1 for NHCl2, and 12.5 ± 1 for NHBrCl. The present report provides a comprehensive data set describing the free energies of the neutral inorganic halamines, the anionic conjugate base species, and the cationic conjugate acid species, with approximately uniform uncertainty bounds assigned throughout.

Published in:
Environmental Science & Technology, 51, 1, 128-140
Washington, Amer Chemical Soc
Publication Date (Web): December 16, 2016

 Record created 2017-01-26, last modified 2020-07-29

Rate this document:

Rate this document:
(Not yet reviewed)