Infoscience

Conference paper

Two-Phase Mini-Thermosyphon Electronics Cooling, Part 4: Application to 2U Servers

This paper is the fourth part of the present study on two-phase mini-thermosyphon cooling. As mentioned in the first three parts, gravity-driven cooling systems using microchannel flow boiling can become a long-term scalable solution for cooling of datacenter servers. Indeed, the enhancement of thermal performance and the drastic reduction of power consumption together with the possibility of energy reuse and the inherent passive nature of the system offer a wide range of solutions to thermal designers. While Part 1 presented the first-of-a-kind low-height microchannel two-phase thermosyphon test results and Parts 2 and 3 showed the system scale steady and dynamic modeling and simulation results associated with this design using our in-house simulator, Part 4 deals here with an end-user application, i.e. the cooling of a 2U server. The dynamic code of Part 3 is used to model the behavior of a mini-thermosyphon that would fit within the height of a 2U server (8.9cm high), while respecting the other geometric constraints (positions of the processors, distance of the processors to the back of the blade, etc.). Thus, the simulated system consists of two parallel multi-microchannel evaporator cold plates on the top of two chips of about 11cm(2), a riser, a common water-cooled micro-condenser at the back of the blade, a liquid accumulator and a downcomer (including the piping branches to/from the two cold plates). First, an analysis of the steady-state operation highlights multiple solutions from which one is stable and one is unstable. Then, the influences of few parameters such as refrigerants, piping diameters, water coolant inlet temperature and flow rates, filling ratio and heat flux are evaluated. Simulations with unbalanced heat loads on the two chips being cooled in parallel then show the desirable flow distribution obtained in such gravity-driven systems. Finally, temporal heat load and water coolant flow rate disturbances are simulated and discussed. Noting all of these numerous influences on optimal mini-thermosyphon operation, the need for a accurate and detailed simulation code, benchmarked versus actual system tests, is seen to be imperative for attaining a good, reliable, robust design.

Fulltext

  • There is no available fulltext. Please contact the lab or the authors.

Related material