Myeloid DLL4 Does Not Contribute to the Pathogenesis of Non-Alcoholic Steatohepatitis in LdIr(-/-) Mice

Non-alcoholic steatohepatitis (NASH) is characterized by liver steatosis and inflammation. Currently, the underlying mechanisms leading to hepatic inflammation are not fully understood and consequently, therapeutic options are poor. Non-alcoholic steatohepatitis (NASH) and atherosclerosis share the same etiology whereby macrophages play a key role in disease progression. Macrophage function can be modulated via activation of receptor-ligand binding of Notch signaling. Relevantly, global inhibition of Notch ligand Delta-Like Ligand-4 (DLL4) attenuates atherosclerosis by altering the macrophage-mediated inflammatory response. However, the specific contribution of macrophage DLL4 to hepatic inflammation is currently unknown. We hypothesized that myeloid DLL4 deficiency in low-density lipoprotein receptor knock-out (LdIr(-/-) mice reduces hepatic inflammation. Irradiated LdIr(-/-) mice were transplanted (tp) with bone marrow from wild type (Wt) or DLL4(f/f)LysMCre(+0) (DLL4(del)) mice and fed either chow or high fat, high cholesterol (HFC) diet for 11 weeks. Additionally, gene expression was assessed in bone marrow-derived macrophages (BMDM) of DLL4(f/f)LysM-Cre(WT) and DLL(f/f)LysMCre(+/0) mice. In contrast to our hypothesis, inflammation was not decreased in HFC-fed DLL4(del)-transplanted mice. In line, in vitro, there was no difference in the expression of inflammatory genes between DLL4-deficient and wildtype bone marrow derived macrophages. These results suggest that myeloid DLL4 deficiency does not contribute to hepatic inflammation in vivo. Since, macrophage-DLL4 expression in our model was not completely suppressed, it can't be totally excluded that complete DLL4 deletion in macrophages might lead to different results. Nevertheless, the contribution of non-myeloid Kupffer cells to notch signaling with regard to the pathogenesis of steatohepatitis is unknown and as such it is possible that, DLL4 on Kupffer cells promote the pathogenesis of steatohepatitis.


Published in:
PLoS One, 11, 11, e0167199
Year:
2016
Publisher:
San Francisco, Public Library of Science
ISSN:
1932-6203
Laboratories:




 Record created 2017-01-24, last modified 2018-03-17

Publisher's version:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)