Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet
 
research article

Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet

Karube, K.
•
White, J. S.
•
Reynolds, N.
Show more
2016
Nature Materials

Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets(1-11). Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature T-c, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material(12), beta-Mn-type Co8Zn8Mn4, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1606.07543.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

1.21 MB

Format

Adobe PDF

Checksum (MD5)

4b44d3e8450c52194e802652a61f79c9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés