Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Structure of Crenezumab Complex with A beta Shows Loss of beta-Hairpin
 
research article

Structure of Crenezumab Complex with A beta Shows Loss of beta-Hairpin

Ultsch, Mark
•
Li, Bing
•
Maurer, Till
Show more
December 1, 2016
Scientific Reports

Accumulation of amyloid-beta (A beta) peptides and amyloid plaque deposition in brain is postulated as a cause of Alzheimer's disease (AD). The precise pathological species of A beta remains elusive although evidence suggests soluble oligomers may be primarily responsible for neurotoxicity. Crenezumab is a humanized anti-A beta monoclonal IgG4 that binds multiple forms of A beta, with higher affinity for aggregated forms, and that blocks A beta aggregation, and promotes disaggregation. To understand the structural basis for this binding profile and activity, we determined the crystal structure of crenezumab in complex with A beta. The structure reveals a sequential epitope and conformational requirements for epitope recognition, which include a subtle but critical element that is likely the basis for crenezumab's versatile binding profile. We find interactions consistent with high affinity for multiple forms of A beta, particularly oligomers. Of note, crenezumab also sequesters the hydrophobic core of A beta and breaks an essential salt-bridge characteristic of the beta-hairpin conformation, eliminating features characteristic of the basic organization in A beta oligomers and fibrils, and explains crenezumab's inhibition of aggregation and promotion of disaggregation. These insights highlight crenezumab's unique mechanism of action, particularly regarding A beta oligomers, and provide a strong rationale for the evaluation of crenezumab as a potential AD therapy.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

srep39374.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

4.5 MB

Format

Adobe PDF

Checksum (MD5)

ef4d9b8980de7833d6391c01b5d74bee

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés