Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Force–displacement response of in-plane loaded unreinforced brick masonry walls: the Critical Diagonal Crack model
 
research article

Force–displacement response of in-plane loaded unreinforced brick masonry walls: the Critical Diagonal Crack model

Wilding, Bastian  
•
Beyer, Katrin  
2017
Bulletin of Earthquake Engineering

This article introduces an analytical model to compute the monotonic force–displacement response of in-plane loaded unreinforced brick masonry walls accounting for walls failing in shear or flexure. The masonry wall is modelled as elastic in compression with zero tensile strength using a Timoshenko beam element. Its cross-section properties (moment of inertia and area) are continuously updated to capture the non-linearity that results from flexural and shear cracking. For this purpose, diagonal cracking of shear critical walls is represented by one Critical Diagonal Crack. The ultimate drift capacity of the wall is determined based on an approach evaluating a plastic zone at the wall toe. Validation against results of cyclic full-scale tests of unreinforced masonry walls made with vertically perforated clay units shows that the presented formulation is capable of accurately predicting the effective stiffness, the maximum strength and the ultimate drift capacity of the wall. It outperforms current empirical code equations with regard to stiffness and ultimate drift capacity estimates and yields similar results concerning strength prediction.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2017-Wilding-Force-DisplacementResponseIn-PlaneLoadedBrickMasonryWalls-CriticalDiagonalCrack.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.71 MB

Format

Adobe PDF

Checksum (MD5)

6a461ec8634144513620c4f97ba3b55d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés