Infoscience

Journal article

Dopant-Free Donor (D)--D--D Conjugated Hole-Transport Materials for Efficient and Stable Perovskite Solar Cells

Three novel hole-transporting materials (HTMs) using the 4-methoxytriphenylamine (MeOTPA) core were designed and synthesized. The energy levels of the HTMs were tuned to match the perovskite energy levels by introducing symmetrical electron-donating groups linked with olefinic bonds as the bridge. The methylammonium lead triiodide (MAPbI(3)) perovskite solar cells based on the new HTM Z34 (see main text for structure) exhibited a remarkable overall power conversion efficiency (PCE) of 16.1% without any dopants or additives, which is comparable to 16.7% obtained by a p-doped 2,2,7,7-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9-spirobifluorene (spiro-OMeTAD)-based device fabricated under the same conditions. Importantly, the devices based on the three new HTMs show relatively improved stability compared to devices based on spiro-OMeTAD when aged under ambient air containing 30% relative humidity in the dark.

Fulltext

Related material