Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Inhibiting Mycobacterium tuberculosis within and without
 
review article

Inhibiting Mycobacterium tuberculosis within and without

Cole, Stewart T.  
2016
Philosophical Transactions Of The Royal Society B-Biological Sciences

Tuberculosis remains a scourge of global health with shrinking treatment options due to the spread of drug-resistant strains of Mycobacterium tuberculosis. Intensive efforts have been made in the past 15 years to find leads for drug development so that better, more potent drugs inhibiting new targets could be produced and thus shorten treatment duration. Initial attempts focused on repurposing drugs that had been developed for other therapeutic areas but these agents did not meet their goals in clinical trials. Attempts to find new lead compounds employing target-based screens were unsuccessful as the leads were inactive against M. tuberculosis. Greater success was achieved using phenotypic screening against live tubercle bacilli and this gave rise to the drugs bedaquiline, pretomanid and delamanid, currently in phase III trials. Subsequent phenotypic screens also uncovered new leads and targets but several of these targets proved to be promiscuous and inhibited by a variety of seemingly unrelated pharmacophores. This setback sparked an interest in alternative screening approaches that mimic the disease state more accurately. Foremost among these were cell-based screens, often involving macrophages, as these should reflect the bacterium's niche in the host more faithfully. A major advantage of this approach is its ability to uncover functions that are central to infection but not necessarily required for growth in vitro. For instance, inhibition of virulence functions mediated by the ESX-1 secretion system severely attenuates intracellular M. tuberculosis, preventing intercellular spread and ultimately limiting tissue damage. Cell-based screens have highlighted the druggability of energy production via the electron transport chain and cholesterol metabolism. Here, I review the scientific progress and the pipeline, but warn against over-optimism due to the lack of industrial commitment for tuberculosis drug development and other socio-economic factors. This article is part of the themed issue 'The new bacteriology'.

  • Details
  • Metrics
Type
review article
DOI
10.1098/rstb.2015.0506
Web of Science ID

WOS:000385338300013

Author(s)
Cole, Stewart T.  
Date Issued

2016

Publisher

Royal Soc

Published in
Philosophical Transactions Of The Royal Society B-Biological Sciences
Volume

371

Issue

1707

Article Number

20150506

Subjects

antibiotics

•

drug resistance

•

drug discovery

•

phagocytes

•

tuberculosis

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
UPCOL  
Available on Infoscience
November 21, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/131349
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés