Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Quantum state resolved molecular beam reflectivity measurements: CH4 dissociation on Pt(111)
 
research article

Quantum state resolved molecular beam reflectivity measurements: CH4 dissociation on Pt(111)

Chadwick, Helen Jane  
•
Gutiérrez-Gonzalez, Ana
•
Beck, Rainer D.  
2016
Journal of Chemical Physics

The King and Wells molecular beam reflectivity method has been used for a quantum state resolved study of the dissociative chemisorption of CH4 on Pt(111) at several surface temperatures. Initial sticking coefficients were measured for incident CH4 prepared both with a single quantum of antisymmetric stretch vibration by infrared laser pumping, and without laser excitation. Vibrational excitation of the mode is observed to be less efficient than incident translational energy in promoting the dissociation reaction with a vibrational efficacy = 0.65. The initial state resolved sticking coefficient was found to be independent of the surface temperature over the 50kJ/mol to 120kJ/mol translational energy range studied here. However, the surface temperature dependence of the King and Wells data reveals the migration of adsorbed carbon formed by CH4 dissociation on the Pt(111) surface leading to the growth of carbon particles.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1.4966921.pdf

Access type

openaccess

Size

768.43 KB

Format

Adobe PDF

Checksum (MD5)

c15e8ac78923bcd79b6ef26333e8f6aa

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés