Magnetodielectric detection of magnetic quadrupole order in Ba(TiO)Cu4(PO4)4 with Cu4O12 square cupolas

In vortex-like spin arrangements, multiple spins can combine into emergent multipole moments. Such multipole moments have broken space-inversion and time-reversal symmetries, and can therefore exhibit linear magnetoelectric (ME) activity. Three types of such multipole moments are known: toroidal; monopole; and quadrupole moments. So far, however, the ME activity of these multipole moments has only been established experimentally for the toroidal moment. Here we propose a magnetic square cupola cluster, in which four corner-sharing square-coordinated metal-ligand fragments form a noncoplanar buckled structure, as a promising structural unit that carries an ME-active multipole moment. We substantiate this idea by observing clear magnetodielectric signals associated with an antiferroic ME-active magnetic quadrupole order in the real material Ba(TiO)Cu4(PO4)4. The present result serves as a useful guide for exploring and designing new ME-active materials based on vortex-like spin arrangements.


Published in:
Nature Communications, 7, 13039
Year:
Oct 04 2016
ISSN:
2041-1723
Keywords:
Note:
This article is licensed under a Creative Commons Attribution 4.0 International License
Laboratories:


Note: The status of this file is: Anyone


 Record created 2016-11-02, last modified 2020-10-08

Final:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)