Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Lithium Fluoride Based Electron Contacts for High Efficiency n-Type Crystalline Silicon Solar Cells
 
research article

Lithium Fluoride Based Electron Contacts for High Efficiency n-Type Crystalline Silicon Solar Cells

Bullock, James
•
Zheng, Peiting
•
Jeangros, Quentin  
Show more
2016
Advanced Energy Materials

Low-resistance contact to lightly doped n-type crystalline silicon (c-Si) has long been recognized as technologically challenging due to the pervasive Fermi-level pinning effect. This has hindered the development of certain devices such as n-type c-Si solar cells made with partial rear contacts (PRC) directly to the lowly doped c-Si wafer. Here, a simple and robust process is demonstrated for achieving m Omega cm(2) scale contact resistivities on lightly doped n-type c-Si via a lithium fluoride/aluminum contact. The realization of this low-resistance contact enables the fabrication of a first-of-its-kind high-efficiency n-type PRC solar cell. The electron contact of this cell is made to less than 1% of the rear surface area, reducing the impact of contact recombination and optical losses, permitting a power conversion efficiency of greater than 20% in the initial proof-of-concept stage. The implementation of the LiFx/Al contact mitigates the need for the costly high-temperature phosphorus diffusion, typically implemented in such a cell design to nullify the issue of Fermi level pinning at the electron contact. The timing of this demonstration is significant, given the ongoing transition from p-type to n-type c-Si solar cell architectures, together with the increased adoption of advanced PRC device structures within the c-Si photovoltaic industry.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper_841.pdf

Access type

restricted

Size

1.21 MB

Format

Adobe PDF

Checksum (MD5)

bcc876964f405372a3423b6d40836a3b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés