Structure elucidation of a complex CO2-based organic framework material by NMR crystallography

A three-dimensional structural model of a complex CO2-based organic framework made from high molecular weight, self-assembled, flexible and multi-functional oligomeric constituents has been determined de novo by solid-state NMR including DNP-enhanced experiments. The complete assignment of the N-15, C-13 and H-1 resonances was obtained from a series of two-dimensional through space and through bond correlation experiments. MM-QM calculations were used to generate different model structures for the material which were then evaluated by comparing multiple experimental and calculated NMR parameters. Both NMR and powder X-ray diffraction were evaluated as tools to determine the packing by crystal modelling, and at the level of structural modelling used here PXRD was found not to be a useful complement. The structure determined reveals a highly optimised H-bonding network that explains the unusual selectivity of the self-assembly process which generates the material. The NMR crystallography approach used here should be applicable for the structure determination of other complex solid materials.

Published in:
Chemical Science, 7, 7, 4379-4390
Cambridge, Royal Soc Chemistry

 Record created 2016-10-18, last modified 2018-09-13

Rate this document:

Rate this document:
(Not yet reviewed)