Journal article

Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing

Cruising-for-parking constraints mobility in urban networks. Car-users may have to cruise for on-street parking before reaching their destinations. The accessibility and the cost of parking significantly influence people's travel behavior (such as mode choice, or parking facility choice between on-street and garage). The cruising flow causes delays eventually to everyone, even users with destinations outside limited parking areas. It is therefore important to understand the impact of parking limitation on mobility, and to identify efficient parking policies for travel cost reduction. Most existing studies on parking fall short in reproducing the dynamic spatiotemporal features of traffic congestion in general, lack the treatment of dynamics of the cruising-for-parking phenomenon, or require detailed input data that are typically costly and difficult to collect. In this paper, we propose an aggregated and dynamic approach for modeling multimodal traffic with the treatment on parking, and utilize the approach to design dynamic parking pricing strategies. The proposed approach is based on the Macroscopic Fundamental Diagram (MFD), which can capture congestion dynamics at network-level for single-mode and bi-modal (car and bus) systems. A parsimonious parking model is integrated into the MFD-based multimodal modeling framework, where the dynamics of vehicular and passenger flows are considered with a change in the aggregated behavior (e.g. mode choice and parking facility choice) caused by cruising and congestion. Pricing strategies are developed with the objective of reducing congestion, as well as lowering the total travel cost of all users. A case study is carried out for a bi-modal city network with a congested downtown region. An elegant feedback dynamic parking pricing strategy can effectively reduce travel delay of cruising and the generic congestion. Remarkably, such strategy, which is applicable in real-time management with limited available data, is fairly as efficient as a dynamic pricing scheme obtained from system optimum conditions and a global optimization with full information about the future states of the system. Stackelberg equilibrium is also investigated in a competitive behavior between different parking facility operators. Policy indications on on-street storage capacity management and pricing are provided.

Related material