An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from Biological Media

Fast and sensitive virus detection techniques which can be rapidly deployed at multiple sites are essential to prevent and control future epidemics and bioterrorism threats In this Letter we demonstrate a label free optofluidic nanoplasmonic sensor that can directly detect intact viruses from biological media at clinically relevant concentrations with little to no sample preparation Our sensing platform Is based on an extraordinary light transmission effect in plasmonic nanoholes and utilizes group specific antibodies for highly divergent strains of rapidly evolving viruses So far the questions remain for the possible limitations of this technique for virus detection as the penetration depths of the surface plasmon polaritons are comparable to the dimensions of the pathogens' Here we demonstrate detection and recognition of small enveloped RNA viruses (vesicular stomatitis virus and pseudotyped Ebola) as well as large enveloped DNA viruses (vaccinia virus) within a dynamic range spanning 3 orders of magnitude Our platform by enabling high signal to noise measurements without any mechanical or optical isolation opens up opportunities for detection of a broad range of pathogens in typical biology laboratory settings

Published in:
NANO LETTERS, 10, 12, 4962-4969

 Record created 2016-08-16, last modified 2018-09-13

Rate this document:

Rate this document:
(Not yet reviewed)