Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution
 
conference paper

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution

Turkmen, Mustafa
•
Aksu, Serap
•
Cetin, A. Engin
Show more
Xiao, H.
•
Fan, X.
Show more
2011
Photonic Microdevices/Microstructures for Sensing III
Conference on Photonic Microdevices/Microstructures for Sensing III

The subject of light transmission through optically thin metal films perforated with arrays of subwavelength nanoholes has recently attracted significant attention. In this work, we present experimental and calculated results on optical transmission/reflection of the U-shaped nanoapertures for enhanced optical transmission and resolution. We propose different structure designs in order to prove the effect of geometry on resonance and enhanced fields. Theoretical calculations of transmission/reflection spectra and field distributions of U-shaped nano-apertures are performed by using 3-dimensional finite-difference time-domain method. The results of these numerical calculations show that transmission through the apertures is indeed concentrated in the gap region. Added to theoretical calculations we also performed a liftoff free plasmonic device fabrication technique based on positive resist electron beam lithography and reactive ion etching in order to fabricate U-shaped nanostructures. After transferring nanopattern on 80 nm thick suspended SiNx membrane using EBL followed by dry etching, a directional metal deposition processes is used to deposit 5 nm thick Ti and 30 nm thick Au layers. Theoretical calculations are supported with experimental results to prove the tunability of resonances with the geometry at the mid-infrared wavelengths which could be used for infrared detection of biomolecules.

  • Details
  • Metrics
Type
conference paper
DOI
10.1117/12.884355
Author(s)
Turkmen, Mustafa
Aksu, Serap
Cetin, A. Engin
Yanik, Ahmet A.
Artar, Alp
Altug, Hatice
Editors
Xiao, H.
•
Fan, X.
•
Wang, A.
Date Issued

2011

Publisher

SPIE-INT SOC OPTICAL ENGINEERING

Published in
Photonic Microdevices/Microstructures for Sensing III
ISBN of the book

978-0-8194-8608-0

Series title/Series vol.

Proceedings of SPIE; 8034

Start page

80340H

Subjects

infrared spectroscopy

•

metamaterials

•

nanoplasmonics

•

Nanostructure fabrication

•

near-field effects

•

optical communications

•

optical nanoantenna

•

subwavelength structures

•

surface plasmons

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
BIOS  
Event nameEvent placeEvent date
Conference on Photonic Microdevices/Microstructures for Sensing III

Orlando, FL

APR 27-28, 2011

Available on Infoscience
August 16, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/128650
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés