Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy
 
research article

Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy

Chen, Kai
•
Adato, Ronen
•
Altug, Hatice
2012
ACS NANO

Metamaterial-based perfect absorbers utilize intrinsic loss, with the aid of appropriate structural design, to achieve near unity absorption at a certain wavelength. For most of the reported absorbers, the absorption occurs only at a single wavelength where plasmon resonances are excited in the nanostructures. Here we introduce a dual-band perfect absorber based on a gold nanocross structure. Two bands of maximum absorption of 94% are experimentally accomplished by breaking the symmetry of the cross structure. Furthermore, we demonstrate the two bands can be readily tuned throughout the mid-infrared with their associated resonances giving rise to large near-field enhancements. These features are ideal for multiband surface-enhanced infrared spectroscopy applications. We experimentally demonstrate this application by simultaneously detecting two molecular vibrational modes of a 4 nm thick polymer film utilizing our proposed absorber. Furthermore, in response to variations in the interaction strength between the plasmonic and molecular dipoles, we observe an anticrossing behavior and modification in the spectral line shape of the molecular absorption peak, which are characteristic of the coupling between the two modes.

  • Details
  • Metrics
Type
research article
DOI
10.1021/nn3026468
Author(s)
Chen, Kai
Adato, Ronen
Altug, Hatice
Date Issued

2012

Published in
ACS NANO
Volume

6

Issue

9

Start page

7998

End page

8006

Subjects

metamaterials

•

perfect absorber

•

Plasmonics

•

SEIRA

•

spectroscopy

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
BIOS  
Available on Infoscience
August 16, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/128625
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés