Quasi-Polynomial Local Search for Restricted Max-Min Fair Allocation

The restricted max-min fair allocation problem (also known as the restricted Santa Claus problem) is one of few problems that enjoys the intriguing status of having a better estimation algorithm than approximation algorithm. Indeed, Asadpour et al. [2012] proved that a certain configuration LP can be used to estimate the optimal value within a factor of 1/(4 + epsilon), for any epsilon > 0, but at the same time it is not known how to efficiently find a solution with a comparable performance guarantee. A natural question that arises from their work is if the difference between these guarantees is inherent or results from a lack of suitable techniques. We address this problem by giving a quasi-polynomial approximation algorithm with the mentioned performance guarantee. More specifically, we modify the local search of Asadpour et al. [2012] and provide a novel analysis that lets us significantly improve the bound on its running time: from 2(O(n)) to n(O(log n)). Our techniques also have the interesting property that although we use the rather complex configuration LP in the analysis, we never actually solve it and therefore the resulting algorithm is purely combinatorial.

Published in:
Acm Transactions On Algorithms, 12, 2, 13
New York, Assoc Computing Machinery

 Record created 2016-07-19, last modified 2018-12-03

Rate this document:

Rate this document:
(Not yet reviewed)