Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Orlicz regularity of the gradient of solutions to quasilinear elliptic equations in the plane
 
Loading...
Thumbnail Image
research article

Orlicz regularity of the gradient of solutions to quasilinear elliptic equations in the plane

De Cave, Linda Maria  
•
D'Onofrio, Luigi
•
Schiattarella, Roberta
2016
Boundary Value Problems

Given a planar domain Omega, we study the Dirichlet problem {-divA(x, del v) = f in Omega, v = 0 on partial derivative Omega, where the higher-order term is a quasilinear elliptic operator, and f belongs to the Zygmund space L(log L)delta(log log log L)(beta/2) (Omega) with beta >= 0 and delta >= 1/2. We prove that the gradient of the variational solution v is an element of W-0(1,2) (Omega) belongs to the space L-2(log L)(2 delta-1)(log log log L)(beta)(Omega).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s13661-016-0607-6.pdf

Type

Publisher

Access type

openaccess

License Condition

CC BY

Size

1.59 MB

Format

Adobe PDF

Checksum (MD5)

a0b2f55d941e5c331aebf78fceb04a5b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés