Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. An Intein-based Strategy for the Production of Tag-free Huntingtin Exon 1 Proteins Enables New Insights into the Polyglutamine Dependence of Httex1 Aggregation and Fibril Formation
 
research article

An Intein-based Strategy for the Production of Tag-free Huntingtin Exon 1 Proteins Enables New Insights into the Polyglutamine Dependence of Httex1 Aggregation and Fibril Formation

Vieweg, Sophie  
•
Ansaloni, Annalisa  
•
Wang, Zhe-Ming
Show more
2016
Journal of Biological Chemistry

The first exon of the Huntingtin protein (Httex1) is one of the most actively studied Htt fragments because its overexpression in R6/2 transgenic mice has been shown to recapitulate several key features of Huntington disease. However, the majority of biophysical studies of Httex1 are based on assessing the structure and aggregation of fusion constructs where Httex1 is fused to large proteins, such as glutathione S-transferase, maltosebinding protein, or thioredoxin, or released in solution upon in situ cleavage of these proteins. Herein, we report an inteinbased strategy that allows, for the first time, the rapid and efficient production of native tag-free Httex1 with polyQ repeats ranging from 7Q to 49Q. Aggregation studies on these proteins enabled us to identify interesting polyQ-length-dependent effects on Httex1 oligomer and fibril formation that were previously not observed using Httex1 fusion proteins or Httex1 proteins produced by in situ cleavage of fusion proteins. Our studies revealed the inability of Httex1-7Q/15Q to undergo amyloid fibril formation and an inverse correlation between fibril length and polyQ repeat length, suggesting possible polyQ length-dependent differences in the structural properties of the Httex1 aggregates. Altogether, our findings underscore the importance of working with tag-free Httex1 proteins and indicate that model systems based on non-native Httex1 sequences may not accurately reproduce the effect of polyQ repeat length and solution conditions on Httex1 aggregation kinetics and structural properties.

  • Details
  • Metrics
Type
research article
DOI
10.1074/jbc.M116.713982
Web of Science ID

WOS:000378092800011

Author(s)
Vieweg, Sophie  
Ansaloni, Annalisa  
Wang, Zhe-Ming
Warner, John B.
Lashuel, Hilal A.  
Date Issued

2016

Publisher

Amer Soc Biochemistry Molecular Biology Inc

Published in
Journal of Biological Chemistry
Volume

291

Issue

23

Start page

12074

End page

12086

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMNN  
Available on Infoscience
July 19, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/127611
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés