Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Simultaneous temporal superresolution and denoising for cardiac fluorescence microscopy
 
research article

Simultaneous temporal superresolution and denoising for cardiac fluorescence microscopy

Chan, Kevin G.
•
Streichan, Sebastian J.
•
Trinh, Le A.
Show more
2016
IEEE Transactions on Computational Imaging

Due to low light emission of fluorescent samples, live fluorescence microscopy imposes a tradeoff between spatiotemporal resolution and signal-to-noise ratio. This can result in images and videos containing motion blur or Poisson-type shot noise, depending on the settings used during acquisition. Here, we propose an algorithm to simultaneously denoise and temporally super-resolve movies of repeating microscopic processes that is compatible with any conventional microscopy setup that can achieve imaging at a rate of at least twice that of the fundamental frequency of the process (above 4 frames per second for a 2 Hz process). Our method combines low temporal resolution frames from multiple cycles of a repeating process to reconstruct a denoised, higher temporal resolution image sequence which is the solution to a linear program that maximizes the consistency of the reconstruction with the measurements, under a regularization constraint. This paper describes, in particular, a parallelizable superresolution reconstruction algorithm and demonstrates its application to live cardiac fluorescence microscopy. Using our method, we experimentally show temporal resolution improvement by a factor of 1.6, resulting in a visible reduction of motion blur in both on-sample and off-sample frames.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Chan_IEEETRANS.COMPUT.IMAG._2016.pdf

Access type

openaccess

Size

4.62 MB

Format

Adobe PDF

Checksum (MD5)

d939153a50548e9ba0e0c0e1b13be3ab

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés