Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. TRANSFORMERS: Robust Spatial Joins on Non-Uniform Data Distributions
 
conference paper

TRANSFORMERS: Robust Spatial Joins on Non-Uniform Data Distributions

Pavlovic, Mirjana  
•
Heinis, Thomas  
•
Tauheed, Farhan  
Show more
2016
2016 32nd Ieee International Conference On Data Engineering (ICDE)
IEEE 32nd International Conference on Data Engineering

Spatial joins are becoming increasingly ubiquitous in many applications, particularly in the scientific domain. While several approaches have been proposed for joining spatial datasets, each of them has a strength for a particular type of density ratio among the joined datasets. More generally, no single proposed method can efficiently join two spatial datasets in a robust manner with respect to their data distributions. Some approaches do well for datasets with contrasting densities while others do better with similar densities. None of them does well when the datasets have locally divergent data distributions. In this paper we develop TRANSFORMERS, an efficient and robust spatial join approach that is indifferent to such variations of distribution among the joined data. TRANSFORMERS achieves this feat by departing from the state-of-the-art through adapting the join strategy and data layout to local density variations among the joined data. It employs a join method based on data-oriented partitioning when joining areas of substantially different local densities, whereas it uses big partitions (as in space-oriented partitioning) when the densities are similar, while seamlessly switching among these two strategies at runtime. We experimentally demonstrate that TRANSFORMERS outperforms state-of-the-art approaches by a factor of between 2 and 8.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ICDE16_research_179.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

2.81 MB

Format

Adobe PDF

Checksum (MD5)

8725823c93dd2e4e0daede312c1f1365

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés