Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Environmental, Energetic and Economic Evaluation of Implementing a Supercritical Fluid-Based Nanocellulose Production Process in a Sugarcane Biorefinery
 
conference paper

Environmental, Energetic and Economic Evaluation of Implementing a Supercritical Fluid-Based Nanocellulose Production Process in a Sugarcane Biorefinery

Queiroz Albarelli, Juliana  
•
Paidosh, Alexandra
•
T. Santos, Diego
Show more
Chianese, Angelo
•
Di Palma, Luca
Show more
2016
Chemical Engineering Transactions
NINE: International Conference on nanotechnology based innovative applications for the environment

Nanocellulose, which is a disintegration product of plant cellulose, has recently come to public attention because of its great mechanical properties combined with renewability and biodegradability. From an environmental point-of-view, nanocellulose has shown potential for applications in drinking water filtration, catalytic degradation of organic pollutants, etc. Nanocellulose prepared from renewable and biodegradable lignocellulosic materials is only considered green and environment-friendly when its obtaining method is also environmentally friendly. Thus, this procedure should be done by means of an eco-friendly multistep procedure. Towards this direction in this study, nanocelulose production that uses supercritical fluid-based processes for cellulose separation, e.g. supercritical CO2 explosion or organosolv assisted by CO2, were compared with conventional steam explosion and organosolv processes in terms of environmental, energetic and economic aspects using commercial simulator Aspen Plus. In addition, the implementation of nanocelulose production as part of an ethanol production process from lignocellulosic materials was also investigated. The results showed that the production of nanocellulose from the lignocellulosic residue of the ethanol production through enzymatic hydrolysis is very promising. On the other hand, this more economically attractive process design was when explosion-based methods (i.g. SO2-catalized steam explosion and supercritical CO2 explosion) were used during cellulose separation step. It was determined that over 95% of the energy needs for cellulose disintegration during nanocellulose production process come from heating requirements. However, it was also found that this latter step can be self sufficient in terms of energy usage when the undisintegrated cellulose is used as fuel into an energy generation system. It was estimated that a combined heat and power boiler can produce a heat surplus of 365 kWh, which can be redirected to the lignocellulosic biomass fractionation, enzymatic hydrolysis and/or ethanol production processes, thus reducing the overall energy requirement. In terms of environmental aspects, three environmental indicators were examined. The CO2 emissions per kg of nanocellulose produced was found to be acceptable as it is, but the chemicals/water usage should be re-examined, as their requirements were deemed higher than the desirable.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Environmental Energetic and Economic Evaluation of....pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

restricted

Size

704.62 KB

Format

Adobe PDF

Checksum (MD5)

621b3cebafa0aa97ecc054989a20b1d3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés