Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs
 
Loading...
Thumbnail Image
research article

Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs

Matioli, Elison  
•
Weisbuch, Claude
2010
Journal Of Physics D-Applied Physics

The enhancement of the extraction efficiency in light emitting diodes (LEDs) through the use of photonic crystals (PhCs) requires a structure design that optimizes the interaction of the guided modes with the PhCs. The main optimization parameters are related to the vertical structure of the LED, such as the thickness of layers, depth of the PhCs, position of the quantum wells as well as the PhC period and fill factor. We review the impact of the vertical design of different approaches of PhC LEDs through a theoretical and experimental standpoint, assessing quantitatively the competing mechanisms that act over each guided mode. Three approaches are described to overcome the main limitation of LEDs with surface PhCs, i.e. the insufficient interaction of low order guided modes with the PhCs. The introduction of an AlGaN confining layer in such structure is shown to be effective in extracting a fraction of the optical energy of low order modes; however, this approach is limited by the growth of the lattice mismatched AlGaN layer on GaN. The second approach, based on thin-film LEDs with PhCs, is limited by the presence of an absorbing reflective metal layer close to the guided modes that plays a major role in the competition between PhC extraction and metal dissipation. Finally, we demonstrate both experimentally and theoretically the superior extraction of the guided light in embedded PhC LEDs due to the higher interaction between all optical modes and the PhCs, which resulted in a close to unity extraction efficiency for this device. The use of high-resolution angle-resolved measurements to experimentally determine the PhC extraction parameters was an essential tool for corroborating the theoretical models and quantifying the competing absorption and extraction mechanisms in LEDs.

  • Details
  • Metrics
Type
research article
DOI
10.1088/0022-3727/43/35/354005
Author(s)
Matioli, Elison  
•
Weisbuch, Claude
Date Issued

2010

Publisher

Iop Publishing Ltd

Published in
Journal Of Physics D-Applied Physics
Volume

43

Issue

35

Article Number

354005

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
POWERLAB  
Available on Infoscience
March 17, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/125014
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés