Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Call Graphs for Languages with Parametric Polymorphism
 
report

Call Graphs for Languages with Parametric Polymorphism

Petrashko, Dmytro  
•
Ureche, Vlad  
•
Lhot\'{a}k, Ond\v{r}ej
Show more
2016

The performance of contemporary object oriented languages depends on optimizations such as devirtualization, inlining, and specialization, and these in turn depend on precise call graph analysis. Existing call graph analyses do not take advantage of the information provided by the rich type systems of contemporary languages, in particular generic type arguments. Many existing approaches analyze Java bytecode, in which generic types have been erased. This paper shows that this discarded information is actually very useful as the context in a context-sensitive analysis, where it significantly improves precision and keeps the running time small. Specifically, we propose and evaluate call graph construction algorithms in which the contexts of a method are (i) the type arguments passed to its type parameters, and (ii) the static types of the arguments passed to its term parameters. The use of static types from the caller as context is effective because it allows more precise dispatch of call sites inside the callee. Our evaluation indicates that the average number of contexts required per method is small. We implement the analysis in the Dotty compiler for Scala, and evaluate it on programs that use the type-parametric Scala collections library and on the Dotty compiler itself. The context-sensitive analysis runs 1.4x faster than a context-insensitive one and discovers 20% more monomorphic call sites at the same time. When applied to method specialization, the imprecision in a context-insensitive call graph would require the average method to be cloned 22 times, whereas the context-sensitive call graph indicates a much more practical 1.00 to 1.50 clones per method.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

323.92 KB

Format

Adobe PDF

Checksum (MD5)

1bcb020dfb1d397a049c31420396096e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés