Cocycle growth for the Steinberg representation

This thesis investigates the growth of the natural cocycle introduced by Klingler for the Steinberg representation. When possible, we extend the framework of simple algebraic groups over a local field to arbitrary Euclidean buildings. In rank one, the growth of the cocycle is determined to be sublinear. In higher rank, the complexity of the problem leads us to study of the geometry of buildings of dimension two, where we describe in details the relative position of three points.

    Keywords: Group theory ; cohomology ; continuous cohomology ; building ; Steinberg representation

    Thèse École polytechnique fédérale de Lausanne EPFL, n° 6599 (2016)
    Programme doctoral Mathématiques
    Faculté des sciences de base
    Institut de mathématiques de géométrie et applications
    Chaire de théorie ergodique et géométrique des groupes
    Jury: Prof. Kathryn Hess Bellwald (présidente) ; Prof. Nicolas Monod (directeur de thèse) ; Prof. Donna Testerman, Prof. Bruno Klingler, Dr Yves de Cornulier (rapporteurs)

    Public defense: 2016-2-26


    Record created on 2016-02-23, modified on 2017-05-12

Related material