Progress in the ITER electron cyclotron heating and current drive system design

An electron cyclotron system is one of the four auxiliary plasma heating systems to be installed on the ITER tokamak. The ITER EC system consists of 24 gyrotrons with associated 12 high voltage power supplies, a set of evacuated transmission lines and two types of launchers. The whole system is designed to inject 20 MW of microwave power at 170 GHz into the plasma. The primary functions of the system include plasma start-up, central heating and current drive, and magneto-hydrodynamic instabilities control. The design takes present day technology and extends towards high power CW operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond. The EC system is faced with significant challenges, which not only includes an advanced microwave system for plasma heating and current drive applications but also has to comply with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012. Since conceptual design of the EC system established in 2007, the EC system has progressed to a preliminary design stage in 2012, and is now moving forward towards a final design. The majority of the subsystems have completed the detailed design and now advancing towards the final design completion. (C) 2014 Elsevier B.V. All rights reserved.

Published in:
Fusion Engineering And Design, 96-97, 547-552
Presented at:
28th Symposium on Fusion Technology (SOFT), San Sebastian, SPAIN, SEP 29-OCT 03, 2014
Lausanne, Elsevier Science Sa

 Record created 2016-02-16, last modified 2020-07-29

Rate this document:

Rate this document:
(Not yet reviewed)