Towards new applications using capillary waveguides

In this paper we demonstrate the enhancement of the sensing capabilities of glass capillaries. We exploit their properties as optical and acoustic waveguides to transform them potentially into high resolution minimally invasive endoscopic devices. We show two possible applications of silica capillary waveguides demonstrating fluorescence and optical-resolution photoacoustic imaging using a single 330 mu m-thick silica capillary. A nanosecond pulsed laser is focused and scanned in front of a capillary by digital phase conjugation through the silica annular ring of the capillary, used as an optical waveguide. We demonstrate optical-resolution photoacoustic images of a 30 mu m-thick nylon thread using the water-filled core of the same capillary as an acoustic waveguide, resulting in a fully passive endoscopic device. Moreover, fluorescence images of 1.5 mu m beads are obtained collecting the fluorescence signal through the optical waveguide. This kind of silica-capillary waveguide together with wavefront shaping techniques such as digital phase conjugation, paves the way to minimally invasive multi-modal endoscopy. (C) 2015 Optical Society of America


Published in:
Biomedical Optics Express, 6, 12, 4619-4631
Year:
2015
Publisher:
Washington, Optical Soc Amer
ISSN:
2156-7085
Laboratories:




 Record created 2016-02-16, last modified 2018-09-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)