Files

Abstract

Using femtosecond pump-probe spectroscopy, we identify excitation-induced dephasing as a major mechanism responsible for the breakdown of the strong coupling between excitons and photons in a semiconductor microcavity. The effects of dephasing are observed on the transmitted probe-pulse spectrum as a density-dependent broadening of the exciton-polariton resonances and the emergence of a third resonance at high excitation density. A striking asymmetry in the energy shift between the upper and the lower polaritons is also evidenced. Using the excitonic Bloch equations, we quantify the respective contributions to the energy shift of many-body effects associated with Coulomb fermion exchange and photon assisted exchange processes and the contribution to collisional broadening.

Details

Actions

Preview