Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Comparison of LPCVD and sputter-etched ZnO layers applied as front electrodes in tandem thin-film silicon solar cells
 
research article

Comparison of LPCVD and sputter-etched ZnO layers applied as front electrodes in tandem thin-film silicon solar cells

Moulin, Etienne
•
Bittkau, Karsten
•
Ghosh, Michael
Show more
2016
Solar Energy Materials And Solar Cells

Aluminum-doped zinc oxide (ZnO:Al) layers deposited by sputtering and boron-doped zinc oxide (ZnO:B) layers deposited by low-pressure chemical vapor deposition (LPCVD) are well-established materials for front electrodes in thin-film silicon solar cells. In this study, both types of front electrodes are evaluated with respect to their inherent properties and their surface textures in micromorph tandem solar cells in the superstrate configuration. The silicon layer stack investigated here consists of a 220-nm-thick amorphous silicon top cell, a 40-nm-thick intermediate reflector and a 1.1-mu m-thick microcrystalline silicon bottom cell; for this specific silicon layer stack, the LPCVD ZnO:B provides higher power conversion efficiency than its sputtered ZnO:Al counterpart. The growth-friendly surface topography of ZnO:Al yields better electrical performance. However, tandem cells on ZnO:Al suffer from a fundamental optical limitation in terms of light trapping in the top cell. They also show a higher parasitic absorption linked to the relatively high doping concentration of the ZnO:Al layers used here. Detailed analysis of the experimental results allows us to clearly understand the opto-electrical behavior of both types of cells and envisage several possible upgrades to further improve their performance. (C) 2015 Published by Elsevier B.V.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper_816.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

restricted

Size

1.05 MB

Format

Adobe PDF

Checksum (MD5)

4c14c165270a4e6d5d2e2691ca9aab68

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés