Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Micro-architectural Analysis of In-memory OLTP
 
conference paper

Micro-architectural Analysis of In-memory OLTP

Sirin, Utku  
•
Tozun, Pinar
•
Porobic, Danica  
Show more
2016
Proceedings of the 2016 International Conference on Management of Data
SIGMOD 2016

Micro-architectural behavior of traditional disk-based online transaction processing (OLTP) systems has been investigated extensively over the past couple of decades. Results show that traditional OLTP mostly under-utilize the available micro-architectural resources. In-memory OLTP systems, on the other hand, process all the data in mainmemory, and therefore, can omit the buffer pool. In addition, they usually adopt more lightweight concurrency control mechanisms, cache-conscious data structures, and cleaner codebases since they are usually designed from scratch. Hence, we expect significant differences in micro-architectural behavior when running OLTP on platforms optimized for inmemory processing as opposed to disk-based database systems. In particular, we expect that in-memory systems exploit micro architectural features such as instruction and data caches significantly better than disk-based systems. This paper sheds light on the micro-architectural behavior of in-memory database systems by analyzing and contrasting it to the behavior of disk-based systems when running OLTP workloads. The results show that despite all the design changes, in-memory OLTP exhibits very similar microarchitectural behavior to disk-based OLTP systems: more than half of the execution time goes to memory stalls where L1 instruction misses and the long-latency data misses from the last-level cache are the dominant factors in the overall stall time. Even though aggressive compilation optimizations can almost eliminate instruction misses, the reduction in instruction stalls amplifies the impact of last-level cache data misses. As a result, the number of instructions retired per cycle barely reaches one on machines that are able to retire up to four for both traditional disk-based and new generation in-memory OLTP.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

sirin_sigmod2016.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

3.67 MB

Format

Adobe PDF

Checksum (MD5)

40cd818f5ab9dce7fa6b03eea805b356

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés