Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Books and Book parts
  4. CNT and proteins for bioelectronics in personalized medicine
 
book part or chapter

CNT and proteins for bioelectronics in personalized medicine

Cavallini, Andrea  
•
Boero, Cristina  
•
De Micheli, Giovanni  
Show more
Carrara, Sandro  
•
Iniewski, Krzysztof
2015
Hand Book of Bioelectronics: Directly Interfacing Electronics and Biological Systems

From their discovery, CNTs have increasingly attracted interest because of their peculiar electrical, mechanical, and chemical properties. In 1991, Sumio Iijima first observed and described in detail the atomic arrangement of this new type of carbon structure [1]. By a technique used for fullerene synthesis, he produced needle-like tubes at the cathode of an arc-discharge evaporator. From that time, carbon nanotubes have been used for many applications and represent one of the most typical building blocks used in nanotechnology. Their peculiarities include unique properties of field emission and electronic transport, higher mechanical strength with respect to other materials, and interesting chemical features. The use of CNTs has recently gained momentum in the development of electrochemical biosensors, since their utilization can create devices with enhanced sensitivity and detection limit capable of detecting compounds in concentrations comparable to those present in the human body. This chapter will review the most important features of carbon nanotubes, and present an example in which their application can enhance the detection of drugs and metabolites relevant in personalized medicine: P450 biosensors for therapeutic drug monitoring.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Handbook of Bioelectronics.pdf

Access type

restricted

Size

2.47 MB

Format

Adobe PDF

Checksum (MD5)

a14120eb0969a62679a66034f9801573

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés