Conference paper

Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model

Controllers based on neuromuscular models hold the promise of energy-efficient and human-like walkers. However, most of them rely on optimizations or cumbersome hand-tuning to find controller parameters which, in turn, are usually working for a specific gait or forward speed only. Consequently, designing neuromuscular controllers for a large variety of gaits is usually challenging and highly sensitive. In this contribution, we propose a neuromuscular controller combining reflexes and a central pattern generator able to generate gaits across a large range of speeds, within a single optimization. Applying this controller to the model of COMAN, a 95 cm tall humanoid robot, we were able to get energy-efficient gaits ranging from 0.4 m/s to 0.9 m/s. This covers normal human walking speeds once scaled to the robot height. In the proposed controller, the robot speed could be continuously commanded within this range by changing three high-level parameters as linear functions of the target speed. This allowed large speed transitions with no additional tuning. By combining reflexes and a central pattern generator, this approach can also predict when the next strike will occur and modulate the step length to step over a hole.


Related material