Journal article

Endo-trivial modules: a reduction to p'-central extensions

We examine how, in prime characteristic p, the group of endotrivial modules of a finite group G and the group of endotrivial modules of a quotient of G modulo a normal subgroup of order prime to p are related. There is always an inflation map, but examples show that this map is in general not surjective. We prove that the situation is controlled by a single central extension, namely, the central extension given by a p′-representation group of the quotient of G by its largest normal p′-subgroup.

Related material