Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Structured Dimensionality Reduction for Additive Model Regression
 
research article

Structured Dimensionality Reduction for Additive Model Regression

Fawzi, Alhussein  
•
Fiot, Jean-Baptiste
•
Chen, Bei
Show more
2016
IEEE Transactions on Knowledge and Data Engineering

Additive models are regression methods which model the response variable as the sum of univariate transfer functions of the input variables. Key benefits of additive models are their accuracy and interpretability on many real-world tasks. Additive models are however not adapted to problems involving a large number (e.g., hundreds) of input variables, as they are prone to overfitting in addition to losing interpretability. In this paper, we introduce a novel framework for applying additive models to a large number of input variables. The key idea is to reduce the task dimensionality by deriving a small number of new covariates obtained by linear combinations of the inputs, where the linear weights are estimated with regard to the regression problem at hand. The weights are moreover constrained to prevent overfitting and facilitate the interpretation of the derived covariates. We establish identifiability of the proposed model under mild assumptions and present an efficient approximate learning algorithm. Experiments on synthetic and real-world data demonstrate that our approach compares favorably to baseline methods in terms of accuracy, while resulting in models of lower complexity and yielding practical insights into high-dimensional real-world regression tasks. Our framework broadens the applicability of additive models to high-dimensional problems while maintaining their interpretability and potential to provide practical insights.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

tkde2016.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

4.32 MB

Format

Adobe PDF

Checksum (MD5)

43acb9cb431f035322fbc3b52054891b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés