Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A mathematical and numerical framework for magnetoacoustic tomography with magnetic induction
 
research article

A mathematical and numerical framework for magnetoacoustic tomography with magnetic induction

Ammari, Habib
•
Boulmier, Simon
•
Millien, Pierre  
2015
Journal of Differential Equations

We provide a mathematical analysis and a numerical framework for magnetoacoustic tomography with magnetic induction. The imaging problem is to reconstruct the conductivity distribution of biological tissue from measurements of the Lorentz force induced tissue vibration. We begin with reconstructing from the acoustic measurements the divergence of the Lorentz force, which is acting as the source term in the acoustic wave equation. Then we recover the electric current density from the divergence of the Lorentz force. To solve the nonlinear inverse conductivity problem, we introduce an optimal control method for reconstructing the conductivity from the electric current density. We prove its convergence and stability. We also present a point fixed approach and prove its convergence to the true solution. A new direct reconstruction scheme involving a partial differential equation is then proposed based on viscosity-type regularization to a transport equation satisfied by the electric current density field. We prove that solving such an equation yields the true conductivity distribution as the regularization parameter approaches zero. Finally, we test the three schemes numerically in the presence of measurement noise, quantify their stability and resolution, and compare their performance. © 2015 Elsevier Inc.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

MAT-MI.pdf

Access type

openaccess

Size

1.05 MB

Format

Adobe PDF

Checksum (MD5)

4927427edf827e508bc22cc62c2df0ad

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés