Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Miniature probe for the delivery and monitoring of a photopolymerizable material
 
research article

Miniature probe for the delivery and monitoring of a photopolymerizable material

Schmocker, Andreas  
•
Khoushabi, Azadeh  
•
Schizas, Constantin
Show more
2015
Journal of Biomedical Optics (JBO)

Photopolymerization is a common method to cure materials initially in a liquid state, such as dental implants or bone or tissue fillers. Recent advances in the development of biocompatible gel- and cement-systems open up an avenue for in situ photopolymerization. For minimally invasive surgery, such procedures require miniaturized surgical endoscopic probes to activate and control photopolymerization in situ. We present a miniaturized light probe in which a photoactive material can be (1) mixed, pressurized, and injected, (2) photopolymerized/photoactivated, and (3) monitored during the chemical reaction. The device is used to implant and cure poly(ethylene glycol) dimethacrylate-hydrogel-precursor in situ with ultraviolet A (UVA) light (365 nm) while the polymerization reaction is monitored in real time by collecting the fluorescence and Raman signals generated by the 532 nm excitation light source. Hydrogels could be delivered, photopolymerized, and monitored by the probe up to a curing depth of 4 cm. The size of the photopolymerized samples could be correlated to the fluorescent signal collected by the probe, and the reproducibility of the procedure could be demonstrated. The position of the probe tip inside a bovine caudal intervertebral disc could be estimated in vitro based on the collected fluores- cence and Raman signal.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JBO(Andreas).pdf

Access type

openaccess

Size

4.27 MB

Format

Adobe PDF

Checksum (MD5)

a883a2e6967862b8da0968d590fc1696

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés