Infoscience

Thesis

Techniques for Detection, Root Cause Diagnosis, and Classification of In-Production Concurrency Bugs

Concurrency bugs are at the heart of some of the worst bugs that plague software. Concurrency bugs slow down software development because it can take weeks or even months before developers can identify and fix them. In-production detection, root cause diagnosis, and classification of concurrency bugs is challenging. This is because these activities require heavyweight analyses such as exploring program paths and determining failing program inputs and schedules, all of which are not suited for software running in production. This dissertation develops practical techniques for the detection, root cause diagnosis, and classification of concurrency bugs for inproduction software. Furthermore, we develop ways for developers to better reason about concurrent programs. This dissertation builds upon the following principles: — The approach in this dissertation spans multiple layers of the system stack, because concurrency spans many layers of the system stack. — It performs most of the heavyweight analyses in-house and resorts to minimal in-production analysis in order to move the heavy lifting to where it is least disruptive. — It eschews custom hardware solutions that may be infeasible to implement in the real world. Relying on the aforementioned principles, this dissertation introduces: 1. Techniques to automatically detect concurrency bugs (data races and atomicity violations) in-production by combining in-house static analysis and in-production dynamic analysis. 2. A technique to automatically identify the root causes of in-production failures, with a particular emphasis on failures caused by concurrency bugs. 3. A technique that given a data race, automatically classifies it based on its potential consequence, allowing developers to answer questions such as “can the data race cause a crash or a hang?”, or “does the data race have any observable effect?”. We build a toolchain that implements all the aforementioned techniques. We show that the tools we develop in this dissertation are effective, incur low runtime performance overhead, and have high accuracy and precision.

Related material